Detection and removal of cracks and in digitized paintings

1. INTRODUCTION

1.1 Overview of the System
Many paintings, especially old ones, suffer from breaks in the substrate, the paint, or the varnish. These patterns are usually called cracks or craquelure and can be caused by aging, drying, and mechanical factors. Age cracks can result from nonuniform contraction in the canvas or wood-panel support of the painting, which stresses the layers of the painting. Drying cracks are usually caused by the evaporation of volatile paint components and the consequent shrinkage of the paint. Finally,mechanical cracks result from painting deformations due to external causes, e.g., vibrations and impacts. The appearance of cracks on paintings deteriorates the perceivedimage quality.

However, one can use digital image processing techniques to detect and eliminate the cracks on digitized paintings. Such a “virtual” restoration can provide clues to art historians, museum curators and the general public on how the painting would look like in its initial state, i.e., without the cracks. Furthermore, it can be used as a nondestructive tool for the planning of the actual restoration. The user should manually select a point on each crack to be restored.Other research areas that are closely related to crack removal include image inpainting which deals with the reconstruction of missing or damaged image areas by filling in information from the neighboring areas, and disocclusion, i.e., recovery of object parts that are hidden behind other objects within an image.

 Methods developed in these areas assume that the regions where information has to be filled in are known The former are usually based on partial differential equations (PDEs) and on the calculus of variations whereas the latter rely on texture synthesis principles. A technique that decomposes the image to textured and structured areas and uses appropriate interpolation techniques depending on the area where the missing information lies has also been proposed . The results obtained by these techniques are very good. A methodology for the restoration of cracks on digitized paintings, which adapts and integrates a number of image processing and analysis tools is proposed in this paper.

 The technique consists of the following stages:

 • crack detection;

 • separation of the thin dark brush strokes, which have been

 misidentified as cracks;

 • crack filling (interpolation).

 A certain degree of user interaction, most notably in the crack-detection stage, is required for optimal results. User interaction is rather unavoidable since the large variations observed in the typology of cracks would lead any fully automatic algorithm to failure. However, all processing steps can be executed in real time, and, thus, the user can instantly observe the effect of parameter tuning on the image under study and select in an intuitive way the values that achieve the optimal visual result. Needless to say, only subjective optimality criteria can be used in this case since no ground truth data are available. The opinion of restoration experts that inspected the virtually restored images was very positive.

2. Abstract

An integrated methodology for the detection and removal of cracks on digitized paintings is presented in this project. The cracks are detected by thresholding the output of the morphological top-hat transform. Afterward, the thin dark brush strokes which have been misidentified as cracks are removed using either a median radial basis function neural network on hue and saturation data or a semi-automatic procedure based on region growing.

Finally, crack filling using order statistics filters such as median filter is performed. The methodology has been shown to perform very well on digitized paintings suffering from cracks.

3. SYSTEM REQUIREMENTS
3.1 Existing System

The existing tools such as PhotoShop involve some simple options like blur. In that only a rough pixel transformations will be there. There is no exact crack detection and filling procedure in existing system.

3.2 Proposed System

The proposed system involves exact crack detection and filling procedure. It involves top-hat transformation, region-growing algorithm

(grassfire algorithm) and median filter procedures.
3.3 System Environment

FEATURES OF VISUAL BASIC .NET
What is .NET?

When .NET was announced in late 1999, Microsoft positioned the technology as a platform for building and consuming Extensible Markup Language (XML) Web services. XML Web services allow any type of application, be it a Windows- or browser-based application running on any type of computer system, to consume data from any type of server over the Internet. The reason this idea is so great is the way in which the XML messages are transferred: over established standard protocols that exist today. Using protocols such as SOAP, HTTP, and SMTP, XML Web services make it possible to expose data over the wire with little or no modifications to your existing code.
Since the initial announcement of the .NET Framework, it's taken on many new and different meanings to different people. To a developer, .NET means a great environment for creating robust distributed applications. To an IT manager, .NET means simpler deployment of applications to end users, tighter security, and simpler management. To a CTO or CIO, .NET means happier developers using state-of-the-art development technologies and a smaller bottom line. To understand why all these statements are true, you need to get a grip on what the .NET Framework consists of, and how it's truly a revolutionary step forward for application architecture, development, and deployment.

.NET Framework

Now that you are familiar with the major goals of the .NET Framework, let's briefly examine its architecture. The .NET Framework sits on top of the operating system, which can be a few different flavors of Windows and consists of a number of components .NET is essentially a system application that runs on Windows.

[image: image1.png]

Conceptually, the CLR and the JVM are similar in that they are both runtime infrastructures that abstract the underlying platform differences. However, while the JVM officially supports only the Java language, the CLR supports any language that can be represented in its Common Intermediate Language (CIL). The JVM executes bytecode, so it can, in principle, support many languages, too. Unlike Java's bytecode, though, CIL is never interpreted. Another conceptual difference between the two infrastructures is that Java code runs on any platform with a JVM, whereas .NET code runs only on platforms that support the CLR. In April 2003, the International Organization for Standardization and the International Electrotechnical Committee (ISO/IEC) recognized a functional subset of the CLR, known as the Common Language Interface (CLI), as an international standard.

This development, initiated by Microsoft and developed by ECMA International, a European standards organization, opens the way for third parties to implement their own versions of the CLR on other platforms, such as Linux or Mac OS X. For information on third-party and open source projects working to implement the ISO/IEC CLI and C# specifications.
The layer on top of the CLR is a set of framework base classes. This set of classes is similar to the set of classes found in STL, MFC, ATL, or Java. These classes support rudimentary input and output functionality, string manipulation, security management, network communications, thread management, text management, reflection functionality, collections functionality, as well as other functions.

On top of the framework base classes is a set of classes that extend the base classes to support data management and XML manipulation. These classes, called ADO.NET, support persistent data management—data that is stored on backend databases. Alongside the data classes, the .NET Framework supports a number of classes to let you manipulate XML data and perform XML searching and XML translations.

Classes in three different technologies (including web services, Web Forms, and Windows Forms) extend the framework base classes and the data and XML classes. Web services include a number of classes that support the development of lightweight distributed components, which work even in the face of firewalls and NAT software. These components support plug-and-play across the Internet, because web services employ standard HTTP and SOAP.

Web Forms, the key technology behind ASP.NET, include a number of classes that allow you to rapidly develop web Graphical User Interface (GUI) applications. If you're currently developing web applications with Visual Interdev, you can think of Web Forms as a facility that allows you to develop web GUIs using the same drag-and-drop approach as if you were developing the GUIs in Visual Basic. Simply drag-and-drop controls onto your Web Form, double-click on a control, and write the code to respond to the associated event.

Windows Forms support a set of classes that allow you to develop native Windows GUI applications. You can think of these classes collectively as a much better version of the MFC in C++ because they support easier and more powerful GUI development and provide a common, consistent interface that can be used in all languages.
The Common Language Runtime

At the heart of the .NET Framework is the common language runtime. The common language runtime is responsible for providing the execution environment that code written in a .NET language runs under. The common language runtime can be compared to the Visual Basic 6 runtime, except that the common language runtime is designed to handle all .NET languages, not just one, as the Visual Basic 6 runtime did for Visual Basic 6. The following list describes some of the benefits the common language runtime gives you:

· Automatic memory management

· Cross-language debugging

· Cross-language exception handling

· Full support for component versioning

· Access to legacy COM components

· XCOPY deployment

· Robust security model

You might expect all those features, but this has never been possible using Microsoft development tools. The common language runtime fits into the .NET Framework.
The common language runtime and the .NET Framework.
[image: image2.png]
Note:
Code written using a .NET language is known as managed code. Code that uses anything but the common language runtime is known as unmanaged code. The common language runtime provides a managed execution environment for .NET code, whereas the individual runtimes of non-.NET languages provide an unmanaged execution environment.

Inside the Common Language Runtime
The common language runtime enables code running in its execution environment to have features such as security, versioning, memory management and exception handling because of the way .NET code actually executes. When you compiled Visual Basic 6 forms applications, you had the ability to compile down to native node or p-code. Visual Basic 6 compiler options dialog should refresh your memory of what the Visual Basic 6 options dialog looked like.

 Visual Basic 6 compiler options dialog.
 [image: image3.png]
When you compile your applications in .NET, you aren't creating anything in native code. When you compile in .NET, you're converting your code—no matter what .NET language you're using—into an assembly made up of an intermediate language called Microsoft Intermediate Language (MSIL or just IL, for short). The IL contains all the information about your application, including methods, properties, events, types, exceptions, security objects, and so on, and it also includes metadata about what types in your code can or cannot be exposed to other applications. This was called a type library in Visual Basic 6 or an IDL (interface definition language) file in C++. In .NET, it's simply the metadata that the IL contains about your assembly.

Note

The file format for the IL is known as PE (portable executable) format, which is a standard format for processor-specific execution.
When a user or another component executes your code, a process occurs called just-in-time (JIT) compilation, and it's at this point that the IL is converted into the specific machine language of the processor it's executing on. This makes it very easy to port a .NET application to any type of operating system on any type of processor because the IL is simply waiting to be consumed by a JIT compiler.

Note

The first time an assembly is called in .NET, the JIT process occurs. Subsequent calls don't re-JIT the IL; the previously JITted IL remains in cache and is used over and over again. When you learn about Application Center Test, you also see how the warm-up time of the JIT process can affect application performance.

Understanding the process of compilation in .NET is very important because it makes clear how features such as cross-language debugging and exception handling are possible. You're not actually compiling to any machine-specific code—you're simply compiling down to an intermediate language that's the same for all .NET languages. The IL produced by J# .NET and C# looks just like the IL created by the Visual Basic .NET compiler. These instructions are the same, only how you type them in Visual Studio .NET is different, and the power of the common language runtime is apparent.

When the IL code is JITted into machine-specific language, it does so on an as-needed basis. If your assembly is 10MB and the user is only using a fraction of that 10MB, only the required IL and its dependencies are compiled to machine language. This makes for a very efficient execution process. But during this execution, how does the common language runtime make sure that the IL is correct? Because the compiler for each language creates its own IL, there must be a process that makes sure what's compiling won't corrupt the system. The process that validates the IL is known as verification. Figure 1.5 demonstrates the process the IL goes through before the code actually executes. Figure 1.5. The JIT process and verification.

[image: image4.png]
When code is JIT compiled, the common language runtime checks to make sure that the IL is correct. The rules that the common language runtime uses for verification are set forth in the Common Language Specification (CLS) and the Common Type System (CTS).

The .NET Framework Class Library

The second most important piece of the .NET Framework is the .NET Framework class library (FCL). As you've seen, the common language runtime handles the dirty work of actually running the code you write. But to write the code, you need a foundation of available classes to access the resources of the operating system, database server, or file server. The FCL is made up of a hierarchy of namespaces that expose classes, structures, interfaces, enumerations, and delegates that give you access to these resources.

The namespaces are logically defined by functionality. For example, the System.Data namespace contains all the functionality available to accessing databases. This namespace is further broken down into System.Data.SqlClient, which exposes functionality specific to SQL Server, and System.Data.OleDb, which exposes specific functionality for accessing OLEDB data sources.
 Specific assemblies within the FCL don’t necessarily define the bounds of a namespace; rather, they're focused on functionality and logical grouping. In total, there are more than 20,000 classes in the FCL, all logically grouped in a hierarchical manner. Figure 1.8 shows where the FCL fits into the .NET Framework and the logical grouping of namespaces.

Figure 1.8. The .NET Framework class library.

[image: image5.png]
To use an FCL class in your application, you use the Imports statement in Visual Basic .NET or the using statement in C#. When you reference a namespace in Visual Basic .NET or C#, you also get the convenience of auto-complete and auto-list members when you access the objects' types using Visual Studio .NET. This makes it very easy to determine what types are available for each class in the namespace you're using. As you'll see over the next several weeks, it's very easy to start coding in Visual Studio .NET.
The Structure of a .NET Application
To understand how the common language runtime manages code execution, you must examine the structure of a .NET application. The primary unit of a .NET application is the assembly. An assembly is a self-describing collection of code, resources, and metadata. The assembly manifest contains information about what is contained within the assembly. The assembly manifest provides:

· Identity information, such as the assembly’s name and version number

· A list of all types exposed by the assembly

· A list of other assemblies required by the assembly

· A list of code access security instructions, including permissions required by the assembly and permissions to be denied the assembly

Each assembly has one and only one assembly manifest, and it contains all the description information for the assembly. However, the assembly manifest can be contained in its own file or within one of the assembly’s modules.An assembly contains one or more modules. A module contains the code that makes up your application or library, and it contains metadata that describes that code. When you compile a project into an assembly, your code is converted from high-level code to IL.

Because all managed code is first converted to IL code, applications written in different languages can easily interact. For example, one developer might write an application in Visual C# that accesses a DLL in Visual Basic .NET. Both resources will be converted to IL modules before being executed, thus avoiding any language-incompatibility issues.

Each module also contains a number of types. Types are templates that describe a set of data encapsulation and functionality. There are two kinds of types: reference types (classes) and value types (structures). These types are discussed in greater detail in Lesson 2 of this chapter. Each type is described to the common language runtime in the assembly manifest. A type can contain fields, properties, and methods, each of which should be related to a common functionality. For example, you might have a class that represents a bank account. It contains fields, properties, and methods related to the functions needed to implement a bank account.
A field represents storage of a particular type of data. One field might store the name of an account holder, for example. Properties are similar to fields, but properties usually provide some kind of validation when data is set or retrieved. You might have a property that represents an account balance. When an attempt is made to change the value, the property can check to see if the attempted change is greater than a predetermined limit. If the value is greater than the limit, the property does not allow the change.
Methods represent behavior, such as actions taken on data stored within the class or changes to the user interface. Continuing with the bank account example, you might have a Transfer method that transfers a balance from a checking account to a savings account, or an Alert method that warns users when their balances fall below a predetermined level.
Compilation and Execution of a .NET Application

When you compile a .NET application, it is not compiled to binary machine code; rather, it is converted to IL. This is the form that your deployed application takes—one or more assemblies consisting of executable files and DLL files in IL form. At least one of these assemblies will contain an executable file that has been designated as the entry point for the application.

When execution of your program begins, the first assembly is loaded into memory. At this point, the common language runtime examines the assembly manifest and determines the requirements to run the program. It examines security permissions requested by the assembly and compares them with the system’s security policy. If the system’s security policy does not allow the requested permissions, the application will not run.
If the application passes the system’s security policy, the common language runtime executes the code. It creates a process for the application to run in and begins application execution. When execution starts, the first bit of code that needs to be executed is loaded into memory and compiled into native binary code from IL by the common language runtime’s Just-In-Time (JIT) compiler.
Once compiled, the code is executed and stored in memory as native code. Thus, each portion of code is compiled only once when an application executes. Whenever program execution branches to code that has not yet run, the JIT compiler compiles it ahead of execution and stores it in memory as binary code. This way, application performance is maximized because only the parts of a program that are executed are compiled.

The .NET Framework base class library contains the base classes that provide many of the services and objects you need when writing your applications. The class library is organized into namespaces. A namespace is a logical grouping of types that perform related functions. For example, the System.Windows.Forms namespace contains all the types that make up Windows forms and the controls used in those forms.

Namespaces are logical groupings of related classes. The namespaces in the .NET base class library are organized hierarchically. The root of the .NET Framework is the System namespace. Other namespaces can be accessed with the period operator. A typical namespace construction appears as follows:

System

System.Data

System.Data.SQLClient

The first example refers to the System namespace. The second refers to the System.Data namespace. The third example refers to the System.Data.SQLClient namespace. Table 1.1 introduces some of the more commonly used .NET base class namespaces.
Table 1-1. Representative .NET Namespaces
	Namespace
	Description

	System

	This namespace is the root for many of the low-level types required by the .NET Framework. It is the root for primitive data types as well, and it is the root for all the other namespaces in the .NET base class library.

	System.ComponentModel
	This namespace contains classes involved in component creation and containment, such as attributes, type converters, and license providers.

	System. Data
	This namespace contains classes required for database access and manipulations, as well as additional namespaces used for data access.

	System.Data.Common
	This namespace contains a set of classes that are shared by the .NET managed data providers.

	System.Data.OleDb
	This namespace contains classes that make up the managed data provider for OLE DB data access.

	System.Data.SQLClient
	This namespace contains classes that are optimized for interacting with Microsoft SQL Server.

	System. Drawing
	This namespace exposes GDI+ functionality and provides classes that facilitate graphics rendering.

	System.IO
	In this namespace, you will find types for handling file system I/O.

	System. Math
	This namespace is home to common mathematics functions such as extracting roots and trigonometry.

	System. Reflection
	This namespace provides support for obtaining information and dynamic creation of types at runtime.

	System. Security
	This namespace is home to types dealing with permissions, cryptography, and code access security.

	System. Threading
	This namespace contains classes that facilitate the implementation of multithreaded applications.

	System.Windows.Forms
	This namespace contains types involved in creating standard Windows applications. Classes that represent forms and controls reside here as well.

The namespace names are self-descriptive by design. Straightforward names make the .NET Framework easy to use and allow you to rapidly familiarize you with its contents.

3.4. System Requirements
Hardware Requirements

· System

: pentium iv 2.4 ghz

· Hard disk

: 40 gb

· Floppy drive

: 1.44 mb

· Monitor

: 15 vga colour

· Mouse

: logitech.

· Ram

: 256 mb
Software Requirements

· Operating system
: Windows XP Professional

· Front End

: Microsoft Visual Studio .Net 2005

· Coding Language
: Visual C# .Net.
4. System Analysis
4.1 System Description

This project is entitled as “Detection and removal of cracks and in digitized paintings” .The main objective of the project is to remove and detect the cracks. It contain various modules included in the project as follows:

1. Input module

2. Gray scale conversion module

3. Cracks Detection module

4. Crack filling module

5. Output module

· Input Module

· We are used to give the input image (cracked image) from this module.
· Gray scale conversion module

· If the image is color image then we have to convert into the common color format like a gray colored image. This work will done the use of gray scale algorithm.

· Cracks Detection module

· This is our third module. This module used to find the cracks in the cracked image with the use of surrounded pixels.

· Crack Filling module

· This module used to fill the color by using median filter and cracks removal algorithm. The cracks will be filled by the surrounded pixel color.

· Output module

· The output will produce by this module. Each and every changes in this project will be displayed from the separate forms.

4.2 Data Flow Diagram:

5.SYSTEM DESIGN

5.1 Input design
[image: image6.png]
5.2 OUTPUT DESIGN

[image: image7.png]
5.3 CODE DESIGN
GREY SCALE

// AForge Image Processing Library

//

// Copyright © Andrew Kirillov, 2005

// andrew.kirillov@gmail.com

//

namespace AForge.Imaging.Filters

{

using System;

using System.Drawing;

using System.Drawing.Imaging;

 //using System.Data.SqlClient;

/// <summary>

/// Base class for image grayscaling

/// </summary>

public abstract class Grayscale : IFilter

{

// RGB coefficients for grayscale transformation

private float
cr;

private float
cg;

private float
cb;

// Constructor

public Grayscale(float cr, float cg, float cb)

{

this.cr = cr;

this.cg = cg;

this.cb = cb;

}

// Apply filter

public Bitmap Apply(Bitmap srcImg)

{

if (srcImg.PixelFormat != PixelFormat.Format24bppRgb)

throw new ArgumentException();

// get source image size

int width = srcImg.Width;

int height = srcImg.Height;

// lock source bitmap data

BitmapData srcData = srcImg.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);

// create new grayscale image

Bitmap dstImg = AForge.Imaging.Image.CreateGrayscaleImage(width, height);

// lock destination bitmap data

BitmapData dstData = dstImg.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);

int srcOffset = srcData.Stride - width * 3;

int dstOffset = dstData.Stride - width;

// do the job

unsafe

{

byte * src = (byte *) srcData.Scan0.ToPointer();

byte * dst = (byte *) dstData.Scan0.ToPointer();

// for each line

for (int y = 0; y < height; y++)

{

// for each pixel

for (int x = 0; x < width; x++, src += 3, dst ++)

{

*dst = (byte)(cr * src[RGB.R] + cg * src[RGB.G] + cb * src[RGB.B]);

}

src += srcOffset;

dst += dstOffset;

}

}

// unlock both images

dstImg.UnlockBits(dstData);

srcImg.UnlockBits(srcData);

return dstImg;

}

}

}

EDGE DETECTION

// AForge Image Processing Library

//

// Copyright © Andrew Kirillov, 2005

// andrew.kirillov@gmail.com

//

namespace AForge.Imaging.Filters

{

using System;

using System.Drawing;

using System.Drawing.Imaging;

/// <summary>

/// Canny edge detector

/// </summary>

public class CannyEdgeDetector : IFilter

{

private IFilter grayscaleFilter = new GrayscaleBT709();

private GaussianBlur gaussianFilter = new GaussianBlur();

private byte
lowThreshold = 20;

private byte
highThreshold = 100;

// Sobel kernels

private static int[,]
xKernel = new int[,]

{

{-1, 0, 1},

{-2, 0, 2},

{-1, 0, 1}

};

private static int[,]
yKernel = new int[,]

{

{ 1, 2, 1},

{ 0, 0, 0},

{-1, -2, -1}

};

// Low threshold property

public byte LowThreshold

{

get { return lowThreshold; }

set { lowThreshold = value; }

}

// High threshold property

public byte HighThreshold

{

get { return highThreshold; }

set { highThreshold = value; }

}

// Gaussian sigma property (sigma value for Gaussian blurring)

public double GaussianSigma

{

get { return gaussianFilter.Sigma; }

set { gaussianFilter.Sigma = value; }

}

// Gaussian size property (size value for Gaussian blurring)

public int GaussianSize

{

get { return gaussianFilter.Size; }

set { gaussianFilter.Size = value; }

}

// Constructor

public CannyEdgeDetector()

{

}

public CannyEdgeDetector(byte lowThreshold, byte highThreshold)

{

this.lowThreshold
= lowThreshold;

this.highThreshold
= highThreshold;

}

public CannyEdgeDetector(byte lowThreshold, byte highThreshold, double sigma)

{

this.lowThreshold
= lowThreshold;

this.highThreshold
= highThreshold;

gaussianFilter.Sigma = sigma;

}

// Apply filter

public Bitmap Apply(Bitmap srcImg)

{

// Step 1 - grayscale initial image

Bitmap grayImage = (srcImg.PixelFormat == PixelFormat.Format8bppIndexed) ?

srcImg : grayscaleFilter.Apply(srcImg);

// Step 2 - blur image

Bitmap blurredImage = gaussianFilter.Apply(grayImage);

// get source image size

int width = srcImg.Width;

int height = srcImg.Height;

// lock source bitmap data

BitmapData srcData = blurredImage.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadOnly, PixelFormat.Format8bppIndexed);

// create new image

Bitmap dstImg = AForge.Imaging.Image.CreateGrayscaleImage(width, height);

// lock destination bitmap data

BitmapData dstData = dstImg.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);

int stride = srcData.Stride;

int offset = stride - width;

int
widthM1 = width - 1;

int heightM1 = height - 1;

int i, j, ir;

double v, gx, gy;

double orientation, toPI = 180.0 / System.Math.PI;

byte leftPixel = 0, rightPixel = 0;

// orientation array

byte[] orients = new byte[width * height];

// do the job

unsafe

{

byte * src = (byte *) srcData.Scan0.ToPointer() + stride;

byte * dst = (byte *) dstData.Scan0.ToPointer() + stride;

int p = width;

// Step 3 - calculate magnitude and edge orientation

// for each line

for (int y = 1; y < heightM1; y ++)

{

src++;

dst++;

p++;

// for each pixel

for (int x = 1; x < widthM1; x ++, src ++, dst ++, p ++)

{

gx = gy = 0;

// for each kernel row

for (i = 0; i < 3; i++)

{

ir = i - 1;

// for each kernel column

for (j = 0; j < 3; j++)

{

// source value

v = src[ir * stride + j - 1];

gx += v * xKernel[i, j];

gy += v * yKernel[i, j];

}

}

// get gradient value

*dst = (byte) Math.Min(Math.Abs(gx) + Math.Abs(gy), 255);

// --- get orientation

// can not devide by zero

 if (gx == 0)

 {

 orientation = (gy == 0) ? 0 : 90;

 }

 else

 {

 double div = gy / gx;

// handle angles of the 2nd and 4th quads

if (div < 0)

{

orientation = 180 - System.Math.Atan(- div) * toPI;

}

// handle angles of the 1st and 3rd quads

else

{

orientation = System.Math.Atan(div) * toPI;

}

// get closest angle from 0, 45, 90, 135 set

if (orientation < 22.5)

orientation = 0;

else if (orientation < 67.5)

orientation = 45;

else if (orientation < 112.5)

orientation = 90;

else if (orientation < 157.5)

orientation = 135;

else orientation = 0;

}

// save orientation

orients[p] = (byte) orientation;

}

src += (offset + 1);

dst += (offset + 1);

p++;

}

// Step 4 - suppres non maximums

dst = (byte *) dstData.Scan0.ToPointer() + stride;

p = width;

// for each line

for (int y = 1; y < heightM1; y ++)

{

dst++;

p++;

// for each pixel

for (int x = 1; x <
widthM1; x ++, dst ++, p ++)

{

// get two adjacent pixels

switch (orients[p])

{

case 0:

leftPixel = dst[-1];

rightPixel = dst[1];

break;

case 45:

leftPixel = dst[width - 1];

rightPixel = dst[-width + 1];

break;

case 90:

leftPixel = dst[width];

rightPixel = dst[-width];

break;

case 135:

leftPixel = dst[width + 1];

rightPixel = dst[-width - 1];

break;

}

// compare current pixels value with adjacent pixels

if ((*dst < leftPixel) || (*dst < rightPixel))

{

*dst = 0;

}

}

dst += (offset + 1);

p++;

}

// Step 5 - hysteresis

dst = (byte *) dstData.Scan0.ToPointer() + stride;

p = width;

// for each line

for (int y = 1; y < heightM1; y ++)

{

dst++;

p++;

// for each pixel

for (int x = 1; x < widthM1; x ++, dst ++, p ++)

{

if (*dst < highThreshold)

{

if (*dst < lowThreshold)

{

// non edge

*dst = 0;

}

else

{

// check 8 neighboring pixels

if ((dst[-1] < highThreshold) &&

(dst[1] < highThreshold) &&

(dst[-width - 1] < highThreshold) &&

(dst[-width] < highThreshold) &&

(dst[-width + 1] < highThreshold) &&

(dst[width - 1] < highThreshold) &&

(dst[width] < highThreshold) &&

(dst[width + 1] < highThreshold))

{

*dst = 0;

}

}

}

}

dst += (offset + 1);

p++;

}

}

// unlock images

dstImg.UnlockBits(dstData);

blurredImage.UnlockBits(srcData);

// release temporary objects

blurredImage.Dispose();

if (grayImage != srcImg)

grayImage.Dispose();

return dstImg;

}

}

}

Removal

// AForge Image Processing Library

//

// Copyright © Andrew Kirillov, 2005

// andrew.kirillov@gmail.com

//

namespace AForge.Imaging.Filters

{

using System;

using System.Drawing;

using System.Drawing.Imaging;

/// <summary>

/// Closing operator from Mathematical Morphology

/// </summary>

public class Closing : IFilter

{

IFilter errosion = new Erosion();

IFilter dilatation = new Dilatation();

// Constructor

public Closing()

{

}

public Closing(short[,] se)

{

errosion = new Erosion(se);

dilatation = new Dilatation(se);

}

// Apply filter

public Bitmap Apply(Bitmap srcImg)

{

Bitmap
tmpImg = dilatation.Apply(srcImg);

Bitmap
dstImg = errosion.Apply(tmpImg);

tmpImg.Dispose();

return dstImg;

}

}

}

Erosion

// AForge Image Processing Library

//

// Copyright © Andrew Kirillov, 2005

// andrew.kirillov@gmail.com

//

namespace AForge.Imaging.Filters

{

using System;

using System.Drawing;

using System.Drawing.Imaging;

/// <summary>

/// Erosion operator from Mathematical Morphology

/// </summary>

public class Erosion : IFilter

{

// structuring element

private short[,]
se = new short[3, 3] {{1, 1, 1}, {1, 1, 1}, {1, 1, 1}};

private int

size = 3;

// Constructors

public Erosion()

{

}

public Erosion(short[,] se)

{

int s = se.GetLength(0);

// check structuring element size

if ((s != se.GetLength(1)) || (s < 3) || (s > 25) || (s % 2 == 0))

throw new ArgumentException();

this.se = se;

this.size = s;

}

// Apply filter

public Bitmap Apply(Bitmap srcImg)

{

if (srcImg.PixelFormat != PixelFormat.Format8bppIndexed)

throw new ArgumentException();

// get source image size

int width = srcImg.Width;

int height = srcImg.Height;

// lock source bitmap data

BitmapData srcData = srcImg.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadOnly, PixelFormat.Format8bppIndexed);

// create new grayscale image

Bitmap dstImg = AForge.Imaging.Image.CreateGrayscaleImage(width, height);

// lock destination bitmap data

BitmapData dstData = dstImg.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);

int stride = dstData.Stride;

int offset = stride - width;

int t, ir, jr, i, j, r = size >> 1;

byte min, v;

// do the job

unsafe

{

byte * src = (byte *) srcData.Scan0.ToPointer();

byte * dst = (byte *) dstData.Scan0.ToPointer();

// for each line

for (int y = 0; y < height; y++)

{

// for each pixel

for (int x = 0; x < width; x++, src ++, dst ++)

{

min = 255;

// for each SE row

for (i = 0; i < size; i++)

{

ir = i - r;

t = y + ir;

// skip row

if (t < 0)

continue;

// break

if (t >= height)

break;

// for each SE column

for (j = 0; j < size; j++)

{

jr = j - r;

t = x + jr;

// skip column

if (t < 0)

continue;

if (t < width)

{

if (se[i, j] == 1)

{

// get new MIN value

v = src[ir * stride + jr];

if (v < min)

min = v;

}

}

}

}

// result pixel

*dst = min;

}

src += offset;

dst += offset;

}

}

// unlock both images

dstImg.UnlockBits(dstData);

srcImg.UnlockBits(srcData);

return dstImg;

}

}

}

Dilation

// AForge Image Processing Library

//

// Copyright © Andrew Kirillov, 2005

// andrew.kirillov@gmail.com

//

namespace AForge.Imaging.Filters

{

using System;

using System.Drawing;

using System.Drawing.Imaging;

/// <summary>

/// Dilatation operator from Mathematical Morphology

/// </summary>

public class Dilatation : IFilter

{

// structuring element

private short[,]
se = new short[3, 3]{{1, 1, 1},{1, 1, 1},{1, 1, 1}};

private int
size = 3;

// Constructors

public Dilatation()

{

}

public Dilatation(short[,] se)

{

int s = se.GetLength(0);

// check structuring element size

if ((s != se.GetLength(1)) || (s < 3) || (s > 25) || (s % 2 == 0))

throw new ArgumentException();

this.se = se;

this.size = s;

}

// Apply filter

public Bitmap Apply(Bitmap srcImg)

{

if (srcImg.PixelFormat != PixelFormat.Format8bppIndexed)

throw new ArgumentException();

// get source image size

int width = srcImg.Width;

int height = srcImg.Height;

// lock source bitmap data

BitmapData srcData = srcImg.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadOnly, PixelFormat.Format8bppIndexed);

// create new grayscale image

Bitmap dstImg = AForge.Imaging.Image.CreateGrayscaleImage(width, height);

// lock destination bitmap data

BitmapData dstData = dstImg.LockBits(

new Rectangle(0, 0, width, height),

ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);

int stride = dstData.Stride;

int offset = stride - width;

int t, ir, jr, i, j, r = size >> 1;

byte max, v;

// do the job

unsafe

{

byte * src = (byte *) srcData.Scan0.ToPointer();

byte * dst = (byte *) dstData.Scan0.ToPointer();

// for each line

for (int y = 0; y < height; y++)

{

// for each pixel

for (int x = 0; x < width; x++, src ++, dst ++)

{

max = 0;

// for each SE row

for (i = 0; i < size; i++)

{

ir = i - r;

t = y + ir;

// skip row

if (t < 0)

continue;

// break

if (t >= height)

break;

// for each SE column

for (j = 0; j < size; j++)

{

jr = j - r;

t = x + jr;

// skip column

if (t < 0)

continue;

if (t < width)

{

if (se[i, j] == 1)

{

// get new MAX value

v = src[ir * stride + jr];

if (v > max)

max = v;

}

}

}

}

// result pixel

*dst = max;

}

src += offset;

dst += offset;

}

}

// unlock both images

dstImg.UnlockBits(dstData);

srcImg.UnlockBits(srcData);

return dstImg;

}

}

}

6. SYSTEM MAINTENANCE AND TESTING

6.1 SYSTEM MAINTENANCE
 The objectives of this maintenance work are to make sure that the system gets into work all time without any bug. Provision must be for environmental changes which may affect the computer or software system. This is called the maintenance of the system. Nowadays there is the rapid change in the software world. Due to this rapid change, the system should be capable of adapting these changes. In our project the process can be added without affecting other parts of the system.

 Maintenance plays a vital role. The system liable to accept any modification after its implementation. This system has been designed to favor all new changes. Doing this will not affect the system’s performance or its accuracy.

6.2 SYSTEM TESTING

Testing is vital to the success of the system. System testing makes a logical assumption that if all parts of the system are correct, the goal will be successfully achieved. In the testing process we test the actual system in an organization and gather errors from the new system operates in full efficiency as stated. System testing is the stage of implementation, which is aimed to ensuring that the system works accurately and efficiently.

 In the testing process we test the actual system in an organization and gather errors from the new system and take initiatives to correct the same. All the front-end and back-end connectivity are tested to be sure that the new system operates in full efficiency as stated. System testing is the stage of implementation, which is aimed at ensuring that the system works accurately and efficiently.

 The main objective of testing is to uncover errors from the system. For the uncovering process we have to give proper input data to the system. So we should have more conscious to give input data. It is important to give correct inputs to efficient testing.

 Testing is done for each module. After testing all the modules, the modules are integrated and testing of the final system is done with the test data, specially designed to show that the system will operate successfully in all its aspects conditions.

Thus the system testing is a confirmation that all is correct and an opportunity to show the user that the system works. Inadequate testing or non-testing leads to errors that may appear few months later.

This will create two problems

· Time delay between the cause and appearance of the problem.

· The effect of the system errors on files and records within the system.

 The purpose of the system testing is to consider all the likely variations to which it will be suggested and push the system to its limits. The testing process focuses on logical intervals of the software ensuring that all the statements have been tested and on the function intervals (i.e.,) conducting tests to uncover errors and ensure that defined inputs will produce actual results that agree with the required results.Testing has to be done using the two common steps Unit testing and Integration testing.

 In the project system testing is made as follows:

The procedure level testing is made first. By giving improper inputs, the errors occurred are noted and eliminated.

This is the final step in system life cycle. Here we implement the tested error-free system into real-life environment and make necessary changes, which runs in an online fashion. Here system maintenance is done every months or year based on company policies, and is checked for errors like runtime errors, long run errors and other maintenances like table verification and reports.

6.1. UNIT TESTING:

 Unit testing verification efforts on the smallest unit of software design, module. This is known as “Module Testing”. The modules are tested separately. This testing is carried out during programming stage itself. In these testing steps, each module is found to be working satisfactorily as regard to the expected output from the module.

6.2. INTEGRATION TESTING:

 Integration testing is a systematic technique for constructing tests to uncover error associated within the interface. In the project, all the modules are combined and then the entire programmer is tested as a whole. In the integration-testing step, all the error uncovered is corrected for the next testing steps.

 6.3. VALIDATION TESTING:

 To uncover functional errors, that is, to check whether functional characteristics confirm to specification or not

7. SYSTEM IMPLEMENTATION

 Implementation is the stage of the project when the theoretical design is turned out into a working system. Thus it can be considered to be the most critical stage in achieving a successful new system and in giving the user, confidence that the new system will work and be effective.

 The implementation stage involves careful planning, investigation of the existing system and it’s constraints on implementation, designing of methods to achieve changeover and evaluation of changeover methods.

 Implementation is the process of converting a new system design into operation. It is the phase that focuses on user training, site preparation and file conversion for installing a candidate system. The important factor that should be considered here is that the conversion should not disrupt the functioning of the organization.

8. CONCLUSION

 In this paper, we have presented an integrated strategy for crack detection and filling in digitized paintings. Cracks are detected by using top-hat transform, whereas the thin dark brush strokes, which are misidentified as cracks, are separated either by an automatic technique (MRBF networks) or by a semi-automatic approach. The methodology has been applied for the virtual restoration of images and was found very effective by restoration experts. However, there are certain aspects of the proposed methodology that can be further improved.
For example, the crack-detection stage is not very efficient in detecting cracks located on very dark image areas, since in these areas the intensity of crack pixels is very close to the intensity of the surrounding region. A possible solution to this shortcoming would be to apply the crack-detection algorithm locally on this area and select a low threshold value. Another situation where the system does not perform as efficiently as expected is in the case of cracks that cross the border between regions of different color. In such situations, it might be the case that part of the crack in one area is filled with color from the other area, resulting in small spurs of color in the border between the two regions. However, this phenomenon is rather seldom and, furthermore, the extent of these erroneously filled areas is very small (2–3 pixels maximum).
 A possible solution would be to perform edge detection or segmentation on the image and confine the filling of cracks that cross edges or region borders to pixels from the corresponding region. Another improvement of the crack filling stage could aim at using properly adapted versions of nonlinear multichannel filters (e.g., variants of the vector median filter) instead of processing each color channel independently. These improvements will be the topic of future work on this subject.
APPENDIX

9. BIBLIOGRAPHY
[1] M. Barni, F. Bartolini, and V. Cappellini, “Image processing for virtual

restoration of artworks,” IEEE Multimedia, vol. 7, no. 2, pp. 34–37, Jun.

2000.
[2] F. Abas and K. Martinez, “Craquelure analysis for content-based retrieval,”

in Proc. 14th Int. Conf. Digital Signal Processing, vol. 1, 2002,pp. 111–114.
[3] L. Joyeux, O. Buisson, B. Besserer, and S. Boukir, “Detection and removal

of line scratches in motion picture films,” in Proc. IEEE Int. Conf.

Computer Vision and Pattern Recognition, 1999, pp. 548–553.
[4] A. Kokaram, R. Morris, W. Fitzgerald, and P. Rayner, “Detection of

missing data in image sequences,” IEEE Trans. Image Process., vol. 4,

no. 11, pp. 1496–1508, Nov. 1995.
[5] , “Interpolation of missing data in image sequences,” IEEE Trans.

Image Process., vol. 4, no. 11, pp. 1509–1519, Nov. 1995.
[6] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,”

in Proc. SIGGRAPH, 2000, pp. 417–424.
[7] S. Masnou and J. M. Morel, “Level lines based disocclusion,” in Proc.

IEEE Int. Conf. Image Process., vol. III, 1998, pp. 259–263.
[8] T. Chan and J. Shen, “Non-texture inpaintings by curvature-driven diffusions,”

J. Vis. Commun. Image Represen., vol. 12, no. 4, pp. 436–449,2001.
[9] S. Esedoglu and J. Shen, “Digital inpainting based on the Mumford-

Shah-Euler image model,” Eur. J. Appl. Math., vol. 13, pp. 353–370,2002.
[10] A. Efros and T. Leung, “Texture synthesis by nonparametric sampling,”

in Proc. IEEE Int. Conf. Computer Vision, 1999, pp. 1033–1038.
[11] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, “Simultaneous structure

and texture image inpainting,” IEEE Trans. Image Process., vol. 12, no.

8, pp. 882–889, Aug. 2003.
[12] I. Giakoumis and I. Pitas, “Digital restoration of painting cracks,” in

Proc. IEEE Int. Symp. Circuits and Systems, vol. 4, 1998, pp. 269–272.

Screen shots

First Window

[image: image8.png]
Open image page

[image: image9.png]
Input image

[image: image10.png]
Open grayscale menuitem

[image: image11.png]
Grey scale image

[image: image12.png]
Canny Edge detection open page

[image: image13.png]
Edge Detection Window

[image: image14.png]
Output of canny

[image: image15.png]
Open remove page

[image: image16.png]
Output of crack removal

[image: image17.png]

Output image

 Fill the color

 Edge Detection

Grey scale Conversion

Input Image

